T.R.I.Z est un acronyme russe qui signifie « Théorie de la Résolution des Problèmes Inventifs ». C’est une méthodologie qui permet de résoudre des problèmes techniques avec des solutions innovantes. Mais une question se pose alors : comment une méthode unique pourrait résoudre des problème et innové dans plusieurs secteurs avec des degrés de complexité différents ?
L’inventeur de la méthode, Genrich Altshuller, un russe, a analysé un grand nombre de brevet et à formuler deux hypothèses :
Il a donc construit une méthode autour de ces deux hypothèses.
Dans nôtres cas, nous travaillons sur le software PICC (Private Innovation Competence Center). Il s’agit tout simplement d’une application qui permet de mettre en œuvre la méthode TRIZ avec beaucoup d’automatisations.
Nous avons choisi le tire-bouchon comme objet.
Dans un premier temps nous avons construits notre graphe des problèmes ou « Kmap » comme appeler dans le logiciel.
Construire ce graphe est nécessaire pour la suite du projet. Il permet d’identifier les problèmes de notre objet. La résolution de ces problèmes entraine des solutions partielles. Ces solutions sont dites « partielles » car soit elles minimiseront le problème ou engendreront un nouveau problème.
Voici la Kmap construite pour notre objet le tire-bouchon :
Exemple de raisonnement :
Nous avons choisi le tire-bouchon de type « limonadier » comme objet avec la tige vrillé qui pénètre le bouchon et la partie métallique se pose sur le bouchon et sert d’appui et le bras de levier permet de soulever le bouchon.
Nous avons identifié un problème principal/clé (difficulté d’utilisation) qui nous a mené à un autre problème (difficulté de planter la vis/tige vrillé). En effet il arrive de ne pas réussir à planter au centre du bouchon. Cela peut déchirer une partie du bouchon voir de le couper en deux.
Ensuite nous avons émis l’idée qu’une aide à la visée pourrait résoudre ce problème. Cette solution partielle a engendré un autre problème : trop volumineux.
Ce type de raisonnement est à répéter pour identifier tous les problèmes.
Les PA : ces paramètres sont associés aux solutions partielles. C’est un paramètre sur lequel nous pouvons agir.
Exemple :
Notre solution partielle est « aide à la visée » et notre paramètre d’action est la « précision ». Nous pouvons agir sur la précision de notre viseur en le rendant plus ou moins précis.
Les paramètres d’évaluation sont liés aux problèmes et permettent d’évaluer nos choix.
Exemple :
Le problème soulevé est la difficulté de planter la vis dans le bouchon. Le paramètre qui nous permet d’évaluer est l’efficacité. En effet s’il est facile de planter le bouchon correctement, le système sera évalué comme efficace. En revanche si c’est difficile, et que le bouchon est souvent endommagé, le système est évalué comme ayant une faible efficacité.
Tout d’abord il faut identifier les 3 parties du système étudier :
Identifier clairement ces 3 parties nous permet par la suite de comprendre les différent composant de l’outil et donc sa manière de fonctionner : le moteur – le travail – la transmission – le contrôle.
Avec l’énergie musculaire de l’utilisateur, le levier est actionné, énergie transmise par le corps du tire-bouchon pour effectuer le travail de la vis qui est de retirer le bouchon. Le contrôle sera assumé par l’utilisateur.
Le diagramme multi-écrans est séparé en 3 colonnes : le passe – le présent – le future.
La première ligne représente le système étudié. La plupart du temps le système ne change pas.
La deuxième ligne représente l’évolution de l’outil, comment il a été, comment il est et comment il sera dans le futur (nous imaginons un outil avec des paramètres d’évaluations au maximum).
Les lois d’évolutions permettent de nous orienter sur des axes de développement pour formuler des hypothèses d’évolution de notre objet.
Ils existent 9 lois d’évolutions, mais nous ne pouvons pas forcément formuler des hypothèses :
Dans cette étape nous utilisons les paramètres d’actions et d’évaluations définis précédemment.
Nous agissons sur les paramètres d’actions et définissions deux configurations opposées
Exemple : la longueur du tire-bouchon. Elle peut être courte ou longue.
Ensuite nous associons à ces deux configurations les paramètres d’évaluations préalablement définis.
Exemple :
Pour un tire-bouchon long :
Pour un tire-bouchon court :
Un diagramme à bulle nous permet ensuite de voir les contradictions les plus problématique et donc celle à régler. Plus une bulle est en haut à droite et de grand diamètre plus elle est importante.
Nous en avons donc déduit 5 solutions partielles :
Un tire-bouchon composé d’un levier rétractable avec capteur indiquant la qualité du vin et d’un viseur pour planter le bouchon efficacement. Ces solutions nous permettent d’avoir un tire-bouchon le plus simple d’utilisation possible tout en gardant un produit ergonomique, peu onéreux et attractif grâce à l’innovation majeur qui est le capteur de qualité du vin.
Ce dernier fonctionnera de la façon suivante : il suffira de verser une goutte de vin, le capteur examinera la présence de molécules de chlore et de phénol. Si ces molécules sont absentes une diode verte s'allumera (bon vin), si elles sont présentes une diode rouge s'allumera (vin bouchonné).
Inventive Design & Innovation I4 - Corkscrew
Inventive Design & Innovation I4 - Corkscrew